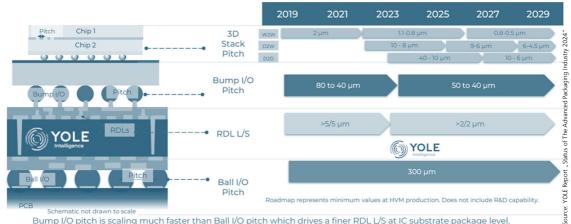


Fraunhofer Institute for Reliability and Microintegration IZM


Dr. Manuela Junghähnel

Electronic Packaging Days 2025

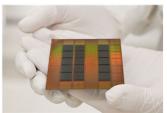
Navigating the Future: Innovation and Roadmapping in Wafer Level Packaging

Advanced packaging roadmap: I/O pitch and RDL L/S

A typical flip-chip IC Substrate

Bump I/O pitch is scaling much faster than Ball I/O pitch which drives a finer RDL L/S at IC substrate package level.

Beide 2

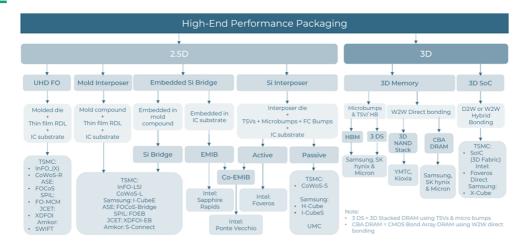

Semiconductor packaging technology is the key pillar if the future is digital

Goals

- the continued reduction of interconnection pitch enabled by TSVs, TMVs, microbumps, and more aggressively, hybrid bonding.
- Further shrinking via diameter and wafer thickness.

Driver Technologies

- Hybrid bonding for 3D SoCs.
- Chiplet-based and heterogeneous architectures
- Co-Packaged Optics
- Glass is gaining momentum as a core substrate material
- Toward 3.5D Packaging: converging toward platforms that combine 2.5D and 3D integration



otos: Sylivia Wolf

Advanced packaging roadmap: Technologies for 2.5 and 3D integration

The APECS pilot line – European chiplet innovation

Advanced Packaging and Heterogeneous Integration for Electronic Components and Systems

Fraunhofer IZM - Wafer Level Integration

Infrastructure & Process Capabilities

ISO 9001-certified process lines at two locations (Berlin & Dresden) for process development, material and equipment evaluation as well as R&D and industrial services on automated and semi-automated production equipment

WLSI Berlin:

Vast variety of materials, processes and wafer materials / sizes suited for R&D prototyping and small volume manufacturing, TRL 2 – 9

ASSID Dresden:

Industry-compatible process line for 200 / 300mm Si and glass wafers and prototyping for small to medium volume manufacturing, TRL 6 – 9

Fraunhofer IZM (Berlin)

1000 m² clean room area (ISO 4-6) Wafer sizes: 100, 150, 200 mm (partially 300 mm)

Fraunhofer IZM-ASSID (Dresden)

900 m² clean room area (ISO 6-7) Wafer sizes: 200 mm + 300 mm

Berlin

CERTIFIED

Dresden

WLSI Research Infrastructure Berlin

100-200mm clean room (expanding 300mm capabilities)

Process line for advanced prototyping and pilot manufacturing

- 2.5D / 3D integration (SiP. CSP) for a variety of semiconductor materials
- · Polymer/Cu-based high density multilayer RDL
- Silicon interposer with application specific TSV integration (via middle, via last, back side TSV) and Glass interposer with TGV, both with high density. multi-layer RDL
- Advanced interconnect solutions for photonics, RF and MEMS packaging and power (Cu/Sn(Ag), Cu/Sn, Ni/Au, sulf, or cvan, Au, AuSn, NPG, In, InSn)
- Temporary/Permanent wafer bonding (adhesive, solder, anodic, direct)
- High accuracy flip-chip assembly (D2D, D2W)
- Fan-In and Fan-Out wafer level packaging (high density RDL first/last, multi chip (Si, GaAs, GaN, SiC, ...))
- High energy particle, x-ray and IR detector module flip-chip interconnects and assembly
- Wafer-level MEMS packaging and prototyping of MEMS sensors
- Development of photonic systems (design, hybrid EIC/PIC integration, characterization)

ISO 9001:2015 certified | MES

Wafer Processing and Assembly Clean Room 1000 m² ISO 3 - ISO 5

100–200mm process line for 2.5D/3D heterogeneous wafer level system integration (expanding 300mm capabilities)

Capacity for several 100 wafers per year with TRL 2 – 9

ASSID Research Infrastructure Dresden

200/300mm clean room

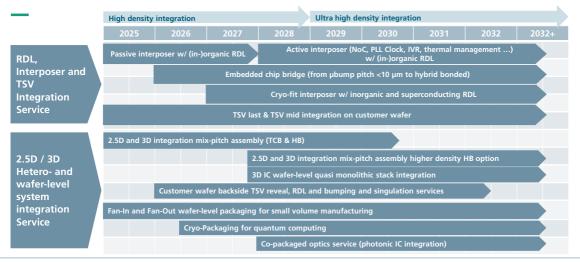
Process line adjusted to development, prototyping and low volume manufacturing under industrial manufacturing conditions.

- 3D wafer-level SiP. CSP
- Application-specific Cu-TSV integration: via middle, via last, backside
- Si interposer with TSV, multi-layer RDL, micro-cavities, integrated passives
- Glass interposer w/wo TGV, multi-layer RDL and μ-interconnects
- High-density, multi-pitch & size micro-bump or pillar interconnects (Cu. SnAg, Au, Ni)
- Pre-assembly: thinning, thin wafer handling, laser & mechanical singulation
- 3D assembly: D2D, D2W, W2W, 3D WL stacking
- Temporary/permanent wafer bonding (adhesive, soldering, direct)
- Direct bond interconnects (DBI) W2W. D2W.
- High density multi-layer polymer RDL for advanced high density flex, flex/silicon & RDL-1st FOWLP applications

R&D clean room ASSID1: 800m2 ISO-class 6, lab space: 300 m² ISO-class 7

Leading edge process line for 2.5D/3D heterogeneous wafer level system integration equipment compatible to run 200mm/300mm wafer-FOUP

Capacity for several 100-1000 wafers per year with TRL 6 – 9


ISO 9001:2015 certified | MES

Technology Roadmap: 300 mm 2.5 und 3D Wafer Integration Technologies

Technologies & Services

- 2.5D/3D integration up to 300 mm, fan-in /-out wafer-level packaging, UHD interposer, hybrid bonding, micro-bumping
- Access to design kits (PDK/ADK), advanced prototyping & pilot production

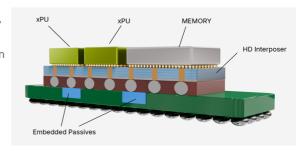
Chiplets & Components

- Design and manufacturing of chiplets for client use
- Combining CMOS, RF, MEMS, photonics, sensors, and more
- Versatile platform supporting chiplets from multiple sources with standard and custom interfaces like UCle and BoW

Demonstrators

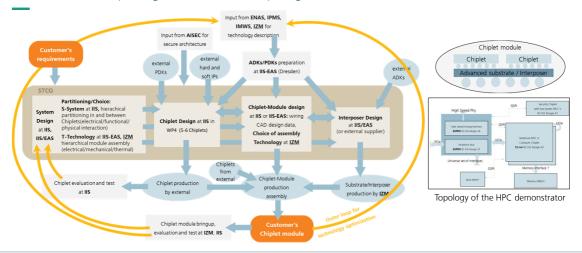
Four demonstrators show a seamless process chain:

- HPC: High-performance computing module with hybrid chiplet integration
- Sensor: Multi-material sensor system with heterogeneous & QMI integration
- Photonics: High-speed photonic module with InP-EML arrays & photonic wire bonding
- RF: RF module up to 300 GHz, integrating InP, GaN, SiGe, BiCMOS & advanced packaging

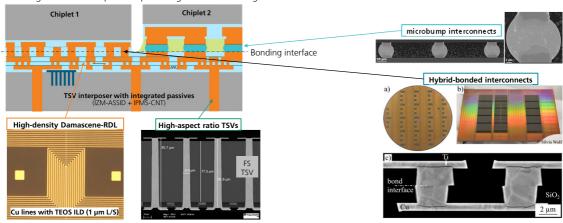


Demonstrator Example: High Performance Computing (WP 6.1)

Lead: Fraunhofer IIS and IZM-ASSID


- STCO concepts will be enabled and used for a first-time right functionality from the design to manufacturing and verification measurements comparing simulations with the results.
- The institutes IIS & AISEC are involved for chiplet architecture specification, fabrication and test and packaging development and interposer and assembly developments.
- IZM, IZM-ASSID, IPMS and IIS, IIS-EAS, AISEC focus on the overall targets for system architecture, STCO and chiplet/interposer interface.
- A security analysis will be carried out by AISEC. The chiplets to be integrated in this demonstrator are designed in WP4 (STCO design).

Demonstrator Example: High Performance Computing (WP 6.1)



© Fraunhofer I7M

Demonstrator Example: High Performance Computing

Heterogeneous mixed-pitch chiplet integration for ultrahigh I/O densities



IZM Research and Development Services on Wafer Level provided to Industry

Page 14

Fraunhofer Institute for Reliability and Microintegration IZM

Thank you for your attention

Fraunhofer Institute for Reliability and Microintegration IZM

Contacts for Wafer Level System Integration

Dr. Michael SchifferHead of Department Wafer Level System Integration Berlin (WLSI-B)

Phone: +49 30 46403-234

E-Mail: michael.schiffer@izm.fraunhofer.de

Fraunhofer IZM Gustav-Meyer-Allee 25 13355 Berlin www.izm.fraunhofer.de

Dr. Manuela Junghähnel

Wafer Level System Integration Dresden (WLSI-DD)
All Silicon System Integration Dresden - ASSID

Phone: +49 351 795572-18

E-Mail: <u>manuela.junghaehnel@assid.izm.fraunhofer.de</u>

Fraunhofer IZM-ASSID Ringstrasse 12 01468 Moritzburg www.izm.fraunhofer.di

