

Fraunhofer Institute for Reliability and Microintegration IZM

Electronic Packaging Days 2025

Energy and Carbon Footprint of Advanced Computer Hardware for HPC and AI Systems

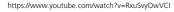
Dr. Lutz Stobbe, Fraunhofer IZM, 2025 Electronic Packaging Days, November 6th 2025

Gigawatt data center area is in full swing

Massive demand in energy and hardware

xAI Colossus (Elon Musk)

- 1 Gigawatt power demand
- 550,000 to 1,000,000 high-end Nvidia GPUs
- Investment of 20 to 30 Billion USD on:
 - Silicon (Compute & Network) 57%
 - Power (Gas & Batteries) 20%
 - · Cooling (Water Recycling) 15%
 - Real Estate (Facility) 10%



x 10

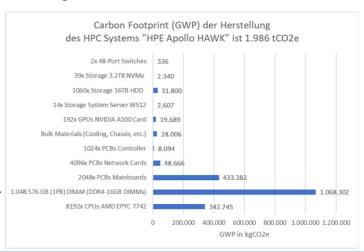
Stargate (OpenAI, Oracle, Softbank)

- 10 Gigawatt power demand (planned)
- Up to 10,000,000 high-end Nvidia GPUs
- · Investment of 500 Billion USD announced:

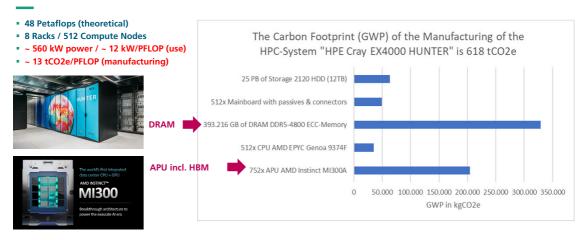
Simplified carbon footprint assessment of the HPE Apollo HAWK System

HRLS High Performance Computing Center Stuttgart (2020 – 2025)

- 26 Petaflops (theoretical)
- 32 Racks / 4096 Compute Nodes
- ~ 3000 kW power / ~ 115 kW/PFLOP (use)
- ~ 76 tCO2e/PFLOP (manufacturing)



https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk



Page 3

Simplified carbon footprint assessment of the HPE Cray EX4000 HUNTER

HRLS High Performance Computing Center Stuttgart (2025 -

Ouelle: https://www.hlrs.de/de/loesungen/systeme/hunter

Page 4

Increasing die area of advanced processor systems

Multiple compute chip-lets with an I/O orchestrator and high bandwidth memory (HBM) in a package

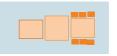
Die-Area:

6.9 cm²

Intel Xeon 8468H

2023

AMD EPYC 9965


Die-Area: 14,6 cm²

NVIDIA GH200

AMD INSTINCT MI300

64,8 cm²

Die-Area of application specific AI systems (ASIC) needs further analysis

Komplexe Chiplet Systeme

2024 (ASIC)

Total die area (est): 67,8 cm² 4x12 HBM dies: 52.8 cm² 2x ASIC dies: (15.0 cm²)

2x active Interposers: 24 cm²

Total die area unknown yetSoC size: 8.2 cm²
64 Tiles: 4 Tiles/cluster 16 Cluster/SoC
Assumption: @ 0,8cm²/tile = **51 cm²**

Total die area unknown yet



Hardware demand for advanced computer systems

Exemplary calculation of die area demand of an Al system

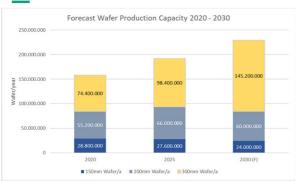
Average XPU die area:

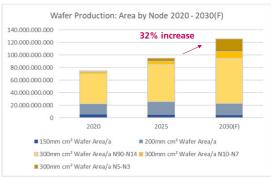
- 15 25 cm² Compute (APU, GPU, CPU)
- 40 60 cm² High Bandwidth Memory (HBM)
- 200 500 cm² Memory (DRAM)
- 25 40 cm² Silicon Interposer
- +++ NAND storage

AMD INSTINCT MI300

2023 (APU)

4x base layer dies: 14.8 cm² 8x4 HBM dies: 46.5 cm² 6x GPU dies: 11.5 cm² 3x CPU dies: 3.7 cm² 1x silicon Interposer: 30 cm²





Forecast wafer production capacity 2020 to 2030

Wafer area (in cm²) is expected to increase by 32% between 2025 and 2030

Calculation by IZM based on data from:

https://www.toolsresearch.com/12-inch-semiconductor-wafers-sell-well/

https://www.semi.org/en/news-media-press-releases/semi-press-releases/global-semiconductor-fabcapacity-projected-to-expand-6%25-in-2024-and-7%25-in-2025-semi-reports

https://www.kbvresearch.com/semiconductor-wafer-market/

Advanced Computing (HPC/AI) is dominated by the USA

Taiwan and South Korea are currently critical links in the advanced IC supply chain

Al software application

- OpenAl ChatGPT
- Microsoft Copilot
- Google Gemini
- Meta AI (Whatsapp)
- Perplexity Al
- Anthropic Claude Al
- Deepseek

Data Center (A/(HPC operation)

Al hardware design

- CPU + FPGA (Intel, AMD, Apple/ARM, Broadcom)
- GPU (NVIDIA)
- ASIC / APU
 - Amazon Trainium (T), Inferentia (A)
 - Microsoft Maia (Accelerator), Cobalt (CPU
 - Google/Broadcom TPU (T+I), Axion (CPU)
- DRAM / HBM
- NAND

https://www.voutube.com/watch?v=WgS3ihsGLvl

Al hardware manufacturing

- Intel (USA)
- Foundries:
 - TSMC (Taiwan) 62%
 - UMC (Taiwan) 6%
 - Samsung Foundry (South Korea) 10%
 - Global Foundries (USA) 6%
 - SMIC (PR China) 5%
- Samsung (South Korea)
- SK Hynix ((South Korea),
- Micron (USA/JP)

Semiconductor manufacturing Green House Gas Protocol

Breakdown of items according to studies from McKinsey & Company and Boston Consulting Group

Scope 2

- Electricity from the grid (consider type of energy mix)
- Heating
- Onside power plant / renewable

Scope 1

- Direct emissions from process gases (consider abatement)
- Direct emissions from onside power plant

Average 10 - 15%

Semiconductor Fab

Scope 3 (Upstream OPEX)

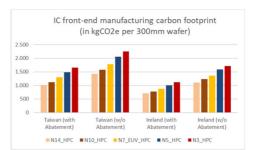
- Raw wafer (15%)* (9%)**
- Chemicals (22%)* (4%)**
- Process Gases (13%)* (16%)**
- Metals (8%)* (24%)**
- Transportation (6%)* (16%)**

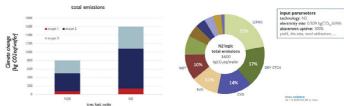
Scope 3 (upstream CAPEX)

- Process equipment (16%)* (24%)**
- Fab & equipment maintenance (6%)*
- Fab construction (6%)*

*McKinsey & Company (2023): Semiconductors Practice: Beyond the fab: Decarbonizing Scope 3 upstream emissions Average 35 - 40%

Average 50 - 55%

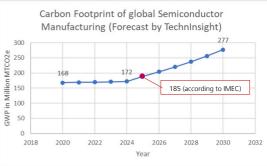

^{**}https://www.bcg.com/publications/2023/why-chip-makersneed-to-focus-on-the-upcoming-decarbonization-challenges


IMEC netzero: IC manufacturing carbon footprint datasets

https://netzero.imec-int.com/

Aspects influencing the IC carbon footprint:

- IC type / functionality → materials & processes
- Die size / design → wafer utilization (yield)
- Tech. node → number & types of process steps
- Process yield → defects due to complexity, etc.
- Location → energy mix (fab / equipment age)
- Market demand → fab utilization



Carbon Footprint of Semiconductor Production (Forecast)

The carbon footprint of global semiconductor manufacturing is expected to increase by 53%

https://library.techinsights.com/public/hg-asset/1a965735-48b8-43a0-8ebd-7b5b8f048db5

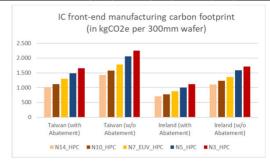
https://www.semiconductor-digest.com/how-can-we-reduce-environmental-impact-in-chip-manufacturing/



TSMC reported IC manufacturing carbon footprint indicate reality

TSMC sustainability report 2024

TSMC Product Carbon Footprint Enterprise | Item | unit | 2021 | 2021 |



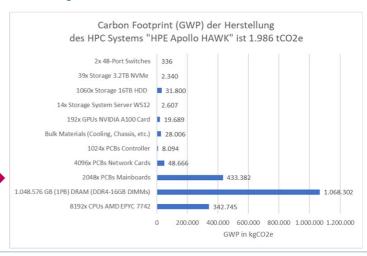
- 8-inch wafer average N16~N90 wafer
- N7~N10 wafer
 N5 wafer
 N3 wafer

https://esg.tsmc.com/en-US/file/public/2024-TSMC-Sustainability-Report-e.pdf

							•			
Enterprise	item	unit	2021	2021	2022	2022	2023	2023	2024	2024
TSMC	wafer shipment	12" eq	14.178.630	1,05	15.252.882	0,98	12.002.177	0,73	12.910.000	0,76
TSMC	capacity	12" eq	13.500.000	1,00	15.500.000	1,00	16.500.000	1,00	17.000.000	1,00
UMC	wafer shipment	12" eq	4.391.111	1,05	4.484.000	1,01	3.202.000	0,69		
UMC	capacity	12" eq	4.201.333	1,00	4.458.000	1,00	4.674.000	1,00		1,00
GF	wafer shipment	12" eq	2.374.000	1,06	2.472.000	1,01	2.211.000	0,81		
GF	capacity	12" eq	2.239.623	1,00	2.447.525	1,00	2.729.630	1,00		1,00

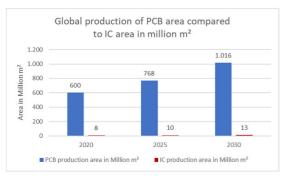
Data from IMEC: https://netzero.imec-int.com/

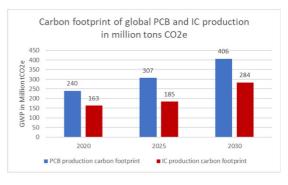
Simplified carbon footprint assessment of the HPE Apollo HAWK System


HRLS High Performance Computing Center Stuttgart (2020 – 2025)

- 26 Petaflops (theoretical)
- 32 Racks / 4096 Compute Nodes
- ~ 3000 kW power / ~ 115 kW/PFLOP (use)
- ~ 76 tCO2e/PFLOP (manufacturing)

https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk





The environmental impact of PCB manufacturing in comparison to IC

PCB design & production should also become a stronger focus of environmental improvement

https://www.ugpcb.com/de/news/trade-news/pcb-industry-explosion-2025-global-100b-pcb-market-deep-dive-technology-breakthrough-paths/

https://www.precedenceresearch.com/printed-circuit-board-market

https://www.kingfordpcb.com/industry-news/5930.html

Ratio of manufacturing and use phase carbon footprint of AI compute system

Exemplary calculations based on averaged values

Al/HPC data center rate power: 1 Gigawatt

Power Usage Effectiveness: 1.3 PUE

Power per compute unit: 770 W

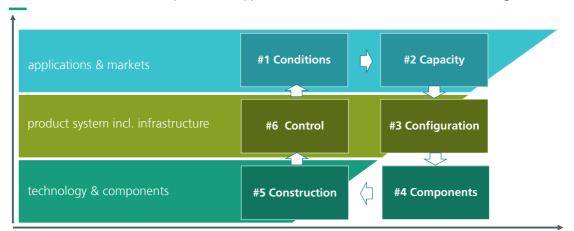
Number of compute units: 100.000 units (@15,000 Euro/unit = 1,500 Million Euro)

Manufacturing CFP: 150,000 tCO2eq (total compute units)

5 year use phase power consumption: 3.4 TWh (@ 0.25 Euro/kWh = 850 Million Euro)

Average energy mix 380gCO2e/kWh: 1,300,000 tCO2e → 90% use and 10% manufacturing phase

Green energy mix 120gCO2e/kWh: 405,000 tCO2e → 73% use and 27% manufacturing phase



The Six Cues (6C method)

A reference model for data acquisition in support of environmental assessments and ecodesign of ICT

Total Environmental Impact

ALU4CED: Aluminum based multifunctional housing for circular electronic devices

Laser direct structuring of a lacquer on aluminum carrier for creating antennas & touch buttons

Polish-German R&D project funded by AiF CORNET program (2023 – 2025)

Two identical AL housing shells easy to recycle, low carbon footprint

Aluminum housing for optimizing thermal management and electromagnetic shielding

Capacitive touch buttons with light indicators integrated on outer surface (LDS techn.)

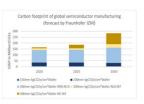
Break-out screws for fastening and ease of recycling

Antennas integrated on outer surface (LDS of lacquer technology)

High production yield design of the printed circuit board (**PCB**) with lower carbon footprint

Anodized surface treatment for personalization and appeal

Compact connector area for easy access


Fraunhofer IZM – Sustainable Electronics

Competencies, Methods, Tools

We are offering competence with respect to:

- the quantification of environmental impacts of advanced microelectronics and ICT systems (IC, package, PCB, etc.)
- the estimation of environmental impacts and costs with respect to new technologies and manufacturing options based on limited data
- the analysis of microelectronic system in order to identify eco-improvement options (development of eco-design strategy)
- the support of product eco-design with focus on energy and material efficiency including design for repair and recycling (circular economy)

Page 20

Fraunhofer Institute for Reliability and Microintegration IZM

Thank you for your attention