

Fraunhofer Institute for Reliability and Microintegration IZM

Electronic Packaging Days 2025

Dr. Stefan Wagner

Challenges of Reliable Power Electronics

Overcoming obstacles in efficient electronic power systems

Technological challenges

Stressors and Boundary Conditions

Thermal and Mechanical Stress

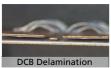
Thermal cycles and power cycling cause material fatigue and structural changes in electronic components.

Electrical Stress Factors

 Electrical loads such as short-circuit resistance, overvoltages, and partial discharges increase component demands.

Environmental Influences

Humidity, hygroscopy, and corrosion significantly affect the long-term stability of electronic parts.


Design Uncertainties and Modeling

Material and manufacturing variations create design uncertainties needing early integration in simulations.

Regulations by (future) legislation – Circular Economy

 Future regulations by legislation will impose new conditions regarding recyclability, repairability, and reuse on new developments (EcoReliability).

Page 2

Technological challenges

Failure mechanisms and components

Failure Mechanisms in Assembly

Fatigue in sinter and solder joints, delamination, and cracking in wire and clip bonds affect reliability.

Material degradation

 The change in material parameters due to the aging of materials (such as thermo-oxidation of epoxies) can result in additional failure mechanisms.

Device-Specific Degradations

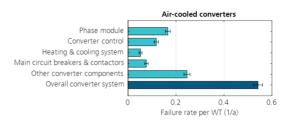
 SiC-MOSFETs face gate oxide degradation and body diode wear, while GaN-HEMTs suffer from dynamic RDS(on) and trapping.

EMC and Crosstalk Challenges

 High switching speeds cause electromagnetic interference and crosstalk, requiring co-design of layout and packaging.

Advanced Failure Analysis

 Analytical methods like FIB-SEM, EBSD, and X-ray CT help identify and address these failure mechanisms precisely.



Failure data analysis wind turbines

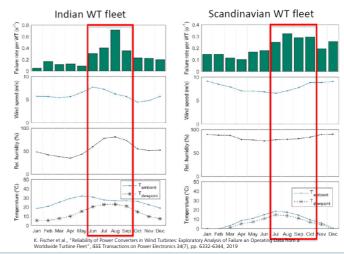
Failure components

Main failure components:

- Phase module components (IGBT modules, driver boards, DC link capacitors and busbars)
- Inverter control

Source: Funded project in the PREPARE program of Fraunhofer-Gesellschaft title: Reliable Power Converters for Renewables (power4re)

Wind turbine downtime


Seasonal failure patterns, correlation ambient conditions

Clusters of phase-module failures in humid seasons

Points to humidity as a key driver of converter failure in WT

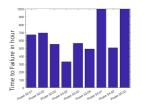
- Humidity has a significant effect
- Phase-module failure rate doubles with each 5 g/m³ higher mean ambient absolute humidity

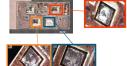
Failure Analysis and Case Studies

Failure Analysis as a Development Tool - Case Studies from Practice

Advanced Failure Analysis Methods

 Non-destructive and analytical techniques like X-ray CT, SAM, FIB-SEM identify root causes in electronics.


Closed-Loop Development Process


 Combining design, simulation, processing, testing and failure analysis enables continuous product improvement.

Design-for-Reliability Integration

 Failure analysis results guide design rules and test profiles, shortening development cycles and improving quality.

KorSikA – Corrosion-resistant sintered joint technology for applications at risk of corrosion

Substrate level investigation

problem definition: Corrosion of Ag Sinter Layers under Maritime Conditions

Goal: Development of Corrosion Prevention Strategies **solution approach:**

- Production of samples (Ag Sinter Layers)
- Analysis (Electrochemical / Optical) of Corrosion Properties
- Analysis of Inhibitors for Corrosion Prevention
 - Investigation of Various Material Combinations at Substrate and Module Level

Methods for Lifetime Prediction

Testing Procedures and Modeling

Accelerated Testing Methods

Various methods like power cycling, temperature cycles, H3TRB, and high-voltage isolation tests evaluate electronic lifespan.

Reliability Modeling

Models such as Arrhenius and Coffin-Manson are adapted to real mission profiles for accurate analysis

Data Calibration and Uncertainty

Calibration using test bench and field data enhances model precision and supports robust design decisions

Design Optimization

Combining test data and simulations enables early detection of weaknesses and targeted design improvements

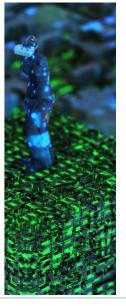
Methods for Lifetime Prediction

Simulation and Digital Twins

Finite Element Method & Co-Simulations

• FEM and electro-thermo-mechanical co-simulations enable comprehensive reliability assessment through virtual experiments

Holistic Multi-Effect Analysis


 Coupling thermal, mechanical, and electrical effects allows integrated analysis of junction-to-case and board behavior

Digital Twins & Design Iterations

 Digital twins support iterative design and development by providing virtual test protocols and damage KPIs

Process Integration Benefits

 Integrating simulations improves predictability, reduces field failures, and enhances communication across teams

Design-for-Reliability and Cooperation

Early Mission Profile Consideration

 Integrate real data-based mission profiles early in design to improve power electronics reliability sustainably

Standardized Testing & Models

 Implement application-specific test programs beyond JEDEC standards and couple models with test setups for traceability

Cross-Functional Collaboration

 Close cooperation between design, packaging, and lab teams enables early issue detection and resolution for reliability

System Reliability Assessment Group (and the IZM) Support & Engagement

• SRA Group offers reliability assessments, simulations, and failure analysis

Fraunhofer Institute for Reliability and Microintegration IZM

Contact

Dr. Stefan Wagner
Dept. Environmental & Reliability Engineering
Tel. +49 30 46403-609
Fax +49 30 46403-211
stefan.wagner@izm.fraunhofer.de

Fraunhofer IZM Berlin

Gustav-Meyer-Allee 25 13355 Berlin Germany +49 30 46403-100 Fraunhofer IZM-ASSID

Ringstraße 12 01468 Dresden-Moritzburg Germany +49 351 795572-12 Fraunhofer IZM Außenstelle Cottbus

Karl-Marx-Straße 69 03044 Cottbus Germany +49 355 383 770-12

www.izm.fraunhofer.de

Fraunhofer Institute for Reliability and Microintegration IZM

Thank you for your attention