ELECTRONIC PACKAGING & SYSTEM INTEGRATION
Fraunhofer IZM develops assembly and interconnection technology, also known as electronic packaging. Almost invisible and undervalued by many, electronic packaging is at the heart of every electronic application. Our technologies connect the individual components, protect the components and devices from vibration and moisture, and reliably dissipate heat. Fraunhofer IZM thus ensures that electronic devices continue to function reliably in even the harshest conditions – we even integrate electronics into golf balls.

Modern packaging technologies make developing smaller and smaller products possible. We process ICs thinner than a sheet of paper. This means that all of the electronics constituting a
Life without electronics is unimaginable these days. More and more products not only include electronics, but also sensors that record signals from the environment just like human senses. The data is displayed to the user on a screen or sent on to technical processing devices, such as a thermostat. The more a product’s electronics become indistinguishable from the product itself, the more important scaling and durability become. As reflected by its name, the main focus of Fraunhofer Institute for Reliability and Microintegration IZM is on these two singular properties.

Hearing aid can fit discretely and invisibly in the ear. We also work to reduce the manufacturing costs of complex electronics. One example is our project with partners from industry to assemble the next generation of radar sensors for driver assistance systems so cost-effectively that even compact executive cars will benefit. But what use would electronics be if it didn’t function reliably? Our research continues to improve reliability and helps customers confidently predict the durability of a product’s electronics. We test electronic components and systems on our equipment under realistic operating conditions. **We get electronic components and systems into shape for the application.**

POWER
Testing and qualification of thick-wire bonds in power electronics
Dr. Eckart Hoene
+49 30 46403-146
eckart.hoene@izm.fraunhofer.de

INDUSTRY
 Shaft seal with integrated energy-sufficient sensors for intelligent machinery
Harald Pötter
+49 30 46403-136
harald.poetter@izm.fraunhofer.de

SECURITY
 Integrating ultra-thin chips in security documents
Ivan Bantchev
+49 30 46403-147
ivan.bantchev@izm.fraunhofer.de
Integration at wafer level

The highest integration densities possible in heterogeneous assemblies are achieved using wafer-level integration. All processing steps are carried out at wafer level after the actual front-end processes have been completed. The packages we develop have lateral widths almost identical to the chip dimensions. We also include active and passive components on the wafer in interlayers and even higher integration densities are achieved with 3D integration using through-silicon vias (TSV).

System design

In highly integrated systems, design can no longer be carried out independently of technology and technology development cannot take place without considering electrical behavior. The term “codesign” is used to denote this synergetic approach to technology and design. Modeling, simulation and analysis technologies combined with innovative electrical measurement methods take center stage here. Research and development in this area focuses on EMC and RF issues (parasitic effects). Subsequent connection to the incorporating system is also integrated into the design at this stage.
Integration at substrate level

Due to increased demand for high-performance but cost-efficient solutions, extended functionalities are also integrated at package or module level using established technologies. This allows our developers to integrate several components into one package (system-in-package – SiP). Several packages can also be stacked three-dimensionally (package-on-package). Use of 3D-technologies at circuit-board level is also increasing. One new assembly method here is embedding bare dies in the substrate. In the future integrating optical functions will also be possible.

Materials, reliability and sustainable development

Throughout the design and development process Fraunhofer IZM conducts reliability analyses on the materials right through to the system as a whole using material behavior and mechanical reliability models. Apart from simulation processes, we employ laser-optical, X-ray and material tests individually or in combination. We also address environmental and sustainability questions as early as during the design process and clarify material and energy requirements as well as the toxicity potential of the employed materials in a timely fashion.
According to the technical requirements of future microelectronic products specific 3D system integration becomes one of the main drivers and the most promising technologies for heterogeneous system integration.

The department High Density Interconnect & Wafer Level Packaging / All Silicon System integration Dresden (HDI&WLP / ASSID) focuses on the development and application of wafer level system integration technologies which includes wafer level packaging (WLP), chip size packaging (CSP), thin film technology and as well 3D integration using through silicon vias (TSVs). The department is embedded in Fraunhofer IZM’s overall strategy of heterogeneous system integration and is a well established partner in the worldwide network for advanced wafer level system integration technologies.

The department operates two clean room facilities in Berlin and Dresden with latest state of the art equipment from 100 to 300mm wafer sizes. The department cooperates with equipment manufacturers, material suppliers and end users of microelectronic products, from all over the world to realize world class wafer level packaging solutions. The well-established technology branches offer development, prototyping and small-volume production as a service within the realms of MCM-D, wafer-level CSP with redistribution layer (RDL), 3D integration and wafer-level bumping for flip chip assembly to industrial partners and customers.

Services
- Thin-film redistribution (CU-RDL) on IC wafers
- Through-silicon-vias (Cu-TSV)
- TSV silicon interposer with Cu-multi layer high-density redistribution layer
- Passive device integration (R, L, C)
- BEOL metallization
- UBM deposition for flip chip interconnects
- Wafer bumping (ECD: Cu, Ni, Au, AuSn, CuSn, SnAG, In)
- Wafer balling with solder preforms
- Pre-assembly and wafer thinning
- Temporary wafer bonding and de-bonding
- Die-to-wafer and wafer-to-wafer-bonding
- 3D stack formation
- Dicing by grinding (DBG)
- Integrated power supply on wafer level
- Application-specific 3D WL-SiP, CSP, TCI prototyping and small batch production
- Thin-film technology workshops
INTEGRATION AT SUBSTRATE LEVEL

SYSTEM INTEGRATION & INTERCONNECTION TECHNOLOGIES

Processes and materials for interconnection technologies at circuit board-, module- and package-level, as well as for the integration of electrical, optical and power electronic components and systems.

Services
- SMD, CSP and BGA assembly
- Die attachment, wire and ribbon bonding
- Flip chip technologies: metallization, bumping, assembly, underfilling
- Encapsulation, molding and jetting/dispensing
- Embedding of active/passive components in rigid/flexible circuit boards
- Assembly of microoptical systems/embedded planar thin-glass waveguides
- Silicon-photonic packaging
- Qualification and testing of microelectronic components

MICRO MECHATRONICS & PCB QUALIFICATION / SOLDERING TRAINING

Center for MicroMechatronics
Design, development and rapid prototyping of non-planar mechatronic assemblies on novel carrier substrates. Functional adaptation of package shapes and structures.

Services
- Design, simulation and assembly of prototypes
- Packaging for single chip and system assembly
- Definition of novel carrier materials and epoxide molding compounds for system encapsulation

Center for Interconnection Technologies (ZVE)
Interconnection technologies for components with high reliability requirements in harsh environmental conditions, reliability assessment, product qualification and failure analysis. Application oriented training courses.

Services
- Accredited IPC-A-610, IPC-7711/7721 and IPC J-STD-001D training center, ESA-approved training center
- Courses in hand, wave and reflow soldering, SMT repair, as well as solder-free interconnection technologies
- Structural and electrical failure analysis
SYSTEM DESIGN

SYSTEM DESIGN & INTEGRATION

Dr. Stephan Guttowski
Phone: +49 30 46403-144
stephan.guttowski@izm.fraunhofer.de

Development of modern methods in the efficient design of microelectronic, microsystem technology and power electronic systems based on parameterized models. Application-oriented focus on wireless sensor systems, RF and high-speed systems, as well as on EMC and the packaging of power-electronic systems.

Services
- Development of highly miniaturized, high-reliability systems, from viability studies through to product design
- Temperature-dependant RF material characterization
- Design of power-electronic systems to EMC requirements
- SiP prototype design and implementation

MATERIALS, RELIABILITY AND SUSTAINABLE DEVELOPMENT

ENVIROMENTAL AND REliABILITY ENGINEERING

Dr. Nils F. Nissen/Dr. Olaf Wittler
Phone: +49 30 46403-130/+49 30 46403-200
nils.nissen@izm.fraunhofer.de
olaf.wittler@izm.fraunhofer.de

Services
- Reliability optimization using multi-physics simulation (thermal, mechanical, fluidic)
- Materials characterization
- Structure and failure analysis
- Combined load testing (humidity, vibration, temperature, mechanical, electrical, etc.)
- Strategies for sustainable electronic development
- Ecodesign of products and assistance with the applicable legal regulations
- Lifetime-oriented design, recycling and condition monitoring of electronic systems
EQUIPMENT AND LABORATORIES

INTEGRATION AT WAFER LEVEL
300 mm Process Line
• DRIE
• CVD, PVD, ECD, Wet Etch and Clean
• Temporary wafer bonding/debonding
• Thinning, dicing
• Flip chip wafer level assembly

Wafer level packaging line
800 m² clean room (classes 10 to 1000), 4”, 6” and 8”, prototyping equipment for some applications also on 300 mm
• Thin-film deposition (sputter and evaporation)
• Photolithography (photo varnishes, polymers, spray coating)
• Galvanic bumping, circuit tracks and through-via filling (Cu, Ni, Au, AuSn, SnAg, PbSn)
• Wet-chemical processes (etching, cleaning)
• Wafer bonding (support wafer, thin-wafer handling)
• Silicon plasma etching (through vias, cavities)

Microenergy laboratory
• Assembly, electrical/chemical characterization of microbatteries and micro-fuel cells

INTEGRATION AT SUBSTRATE LEVEL
Substrate integration line
• CoB lab (die, ribbon, wire bonding down to 35 µm pitch)
• Precision mounting lab (clean room, including chip-to-wafer bonder to 300 mm, thermocompression/sonic)
• Embedding lab (high-precision pick and place machine, circuit board processing line, laser drill/direct imaging)
• Optical laboratory (including hot embossing, micro-optical assembly, component and system characterization)
• Micromechatronics laboratory
• Encapsulations (conformal coating, potting, flip-chip and CoB molding, needle and jet dispensing, transfer and liquid molding, wafer-level encapsulation)
• Textile laboratory (integration of electronics in textiles)
• SMD & flip chip line (Datacon EVO, Siplace X-Placer, Asymtek Axiom Jet, Dispense System)

MATERIALS, RELIABILITY AND SUSTAINABLE DEVELOPMENT
Center for Interconnection Technologies (ZVE)
• Accredited IPC-A-610, IPC-7711/7721 and IPC J-STD-001D training center, ESA-approved training center
• CT and 2D X-ray analysis, ionic contamination measurement, surface-isolation resistance

Qualification and Test Center for Electronic Assemblies
• Ultrasound microscopy, CT X-ray microscope, metallography
• Variable-pressure FE-SEM, dual-beam FIB
• TGA, DSC, DTMA, EDX, Small Spot ESCA, SEM-EDX

Reliability
• Material assessment (thermo-analysis, tensile/flexural strength test, nano-raman spectroscopy, X-ray, EBSD)
• Thermomechanical reliability (damage analysis, lifecycle prognosis, deformation analysis (microDAC))
• Thermal measuring technology (impulse and lock-in infrared thermography, thermal interface material analysis)
• Combined stress testing, including HALT/HASS, vibration combined with climate, drop tester, online failure detection

Sustainability
• Disassembly and recycling laboratory

SYSTEM DESIGN
• EMC laboratory for emission and susceptibility measurements
• RF laboratory for material characterization up to 110 GHz
• Online monitoring laboratory for wireless microsystems
• Multiphysics, multidimensional system simulation laboratory

APPLICATION CENTER
“SMART SYSTEM INTEGRATION”
• Product development
• Technology consulting
• Lab cooperations
• Mediation of assembly capacity
Regardless of whether you already know your way around electronic packaging or are just beginning to consider investing in this technology, we can answer your questions and support you on your way. Our customer spectrum is as wide as our technology portfolio and ranges from the automotive industry, to mechanical engineering, through to medical, communications and security technology. We have helped companies in areas as diverse as clothing, lighting, foodstuff and logistics improve their products by integrating electronics. Don’t hesitate to contact us!

Understand technology and invest in the future
You know your way around electronic packaging and want to benefit from our latest developments. We can collaborate with you to develop customized solutions for miniaturizing and integrating microelectronic systems into your products. Our development services are tailored to your requirements and our solutions range from the small details through to complete systems.
• Consultation
• Feasibility studies
• Participation in publicly-funded research projects
• Bilateral contract research right through to prototype manufacture and
• Quality, reliability and environmental solutions

The advantages of contract research
Bilateral contract research means that we develop innovative technologies and product-oriented solutions exclusively for you and your company’s requirements. The benefits of direct access to a highly qualified, interdisciplinary research team include:
• Assured results
• Time and cost savings
• Professional project management
• High quality standards

Satisfied customers in medium-sized industry
Research and high-tech development is not just for large companies. Many medium-sized companies also make use of our expert know-how. One of the best arguments for cooperating with Fraunhofer IZM are our many satisfied customers, as proven by our high rate of follow-up contracts.

Using technologies for the first time
You want to increase the value of your products, but have not yet invested in electronic technologies or only to a small extent. Despite this, you would like to benefit from the advantages of modern assembly and interconnection technology and microsystem technology and utilize the know-how and the technology transfer we offer? Then the right address is Fraunhofer IZM’s Smart System Integration application center, which is supported by the German federal ministry for education and research. At the center, we take your ideas and select the right solution for your product environment from Fraunhofer IZM’s extensive technology portfolio. We consult with you, determine the technical viability, conceive and develop solutions customized for your products.
The products of the future are smaller, lighter, more multifaceted and reliable, thanks in no small part to the latest integration technologies. In power electronics and LEDs, Fraunhofer IZM works on issues such as dissipating power loss safely even in highly integrated assemblies. Embedding technologies and double-sided die bonding of power ICs are promising possibilities here.

At the same time, depositing biologically active layers on ICs using nanostructured surfaces makes low temperature processing possible. Using nanotechnologies, the researchers also pursue the vision of the “self-assembly” of especially small components.

Higher integration densities can be realized cost-efficiently and flexibly using 3D assemblies. Fraunhofer IZM also researches and develops silicon through vias (TSV), as well as stacking concepts at module level.

Another trend-setting development we pursue is system design that approaches integration beyond the component level to combining the overall architecture, as well as electrical, thermal, mechanical and environmental aspects. “Design for reliability” is a key approach here, providing tools for robust design based on material models and an understanding of combined failure mechanisms.

Partners in Germany and around the world
Fraunhofer IZM is at the cutting-edge of research and maintains a tight network of cooperation projects with renowned research institutes. In Berlin, longstanding and extremely successful collaboration with the Technische Universität Berlin’s Research Center for Microperipheric Technologies secures direct access to basic research results in wafer-level packaging and substrate integration. Our collaboration with the Universität der Bundeswehr München forms another cornerstone and allows us to combine sophisticated silicon technologies with system heterointegration. On European level, Fraunhofer IZM cooperates with CEA-LETI (France), CSEM (Switzerland) and VTT (Finland) in the High Technology Alliance. Globally, we work together with leading research institutes in the USA, Japan and Korea.

Facts about Fraunhofer IZM
Fraunhofer IZM has enjoyed a successful track record since its establishment in 1993. Two independent Fraunhofer institutes have evolved out of Fraunhofer IZM, proving its well-developed sense for important upcoming technology developments. Over 300 researchers and developers work at the four sites in Berlin, Dresden and Oberpfaffenhofen, of which approximately 40 percent are involved in direct industry projects. Our customers are comprised equally of small- and large-sized companies.

The umbrella organization: Fraunhofer
Fraunhofer IZM is one of 60 Fraunhofer-Gesellschaft institutes and is the alliance’s expert in electronic packaging. With its staff of 18 000 and research volume of 1.65 billion euros, Fraunhofer Gesellschaft is one of the world’s leading research centers for applied biological and mechanical engineering research and development. Research of practical utility lies at the heart of all Fraunhofer Gesellschaft activities, and this is reflected by its 1.4 billion euro turnover through contract research, that is, direct contracting from industry or together with industry in national and international funding projects. Fraunhofer Gesellschaft’s key research areas are:
- Microelectronics
- Information and communication technology
- Production technology
- Materials
- Photonics
- Life sciences

Within these areas, Fraunhofer IZM closes the gap between wafer and application and is a member of the Fraunhofer Microelectronics alliance, representing the group’s competency in packaging and smart system integration.
FROM WAFER TO SYSTEM

Fraunhofer Institute for
Reliability and Microintegration IZM

Head:
Prof. Dr. Klaus-Dieter Lang
Gustav-Meyer-Allee 25
13355 Berlin
Phone: + 49 30 46403-100
Fax: + 49 30 46403-111
www.izm.fraunhofer.de
info@izm.fraunhofer.de

Deputy Head:
Rolf Aschenbrenner
Telefon: + 49 30 46403-164
rolf.aschenbrenner@izm.fraunhofer.de

Administration
Meinhard Richter
Phone: + 49 30 46403-110
meinhard.richter@izm.fraunhofer.de

Public relations
Georg Weigelt
Phone: + 49 30 46403-279
georg.weigelt@izm.fraunhofer.de

Marketing
Harald Pötter
Phone: + 49 30 46403-136
harald.poettner@izm.fraunhofer.de